metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[(Nitrato- $\kappa^2 O, O'$)(nitrito- $\kappa^2 O, O'$)(0.25/ 1.75)]bis(1,10-phenanthroline- $\kappa^2 N.N'$)cadmium(II)

Ezzatollah Najafi,^a Mostafa M. Amini^a and Seik Weng Ng^b*

^aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 12 January 2011; accepted 17 January 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.033; wR factor = 0.073; data-to-parameter ratio = 14.9.

The reaction of cadmium nitrate and sodium nitrite in the presence of 1,10-phenanthroline yields the mixed nitratenitrite title complex, $[Cd(NO_2)_{1.75}(NO_3)_{0.25}(C_{12}H_8N_2)_2]$. The metal ion is bis-chelated by two N-heterocycles as well as by the nitrate/nitrite ions in a distorted dodecahedral CdN₄O₄ coordination environment. One nitrite group is ordered; the other is disordered with respect to a nitrate group (ratio 0.75:0.25) concerning the O atom that is not involved in bonding to the metal ion.

Related literature

For the crystal structure of $[Cd(NO_3)_2(C_{12}H_8N_2)_2]$, see: Tadjarodi et al. (2001) and for the crystal structure of $[Cd(NO_2)_2(C_{12}H_8N_2)_2]$, see: Abedini *et al.* (2005).

Experimental

Crystal data

[Cd(NO₂)_{1.75}(NO₃)_{0.25}(C₁₂H₈N₂)₂] $\gamma = 70.404 \ (4)^{\circ}$ $M_r = 568.83$ Triclinic, $P\overline{1}$ Z = 2a = 9.1470 (4) Å Mo $K\alpha$ radiation b = 10.1866 (4) Å $\mu = 1.04 \text{ mm}^{-1}$ c = 13.0057 (6) Å T = 100 K $\alpha = 76.953 \ (4)^{\circ}$ $0.30 \times 0.20 \times 0.10 \text{ mm}$ $\beta = 77.270 \ (4)^{\circ}$

Data collection

Agilent Technologies SuperNova
Dual diffractometer with an Atlas
detector
Absorption correction: multi-scan
(CrysAlis PRO; Agilent

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$ 325 parameters $wR(F^2) = 0.073$ H-atom parameters constrained S = 1.02 $\Delta \rho_{\rm max} = 0.49 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.69 \text{ e } \text{\AA}^{-3}$ 4852 reflections

Table 1 Selected bond lengths (Å).

Cd1-O3	2.355 (2)	Cd1-O1	2,4547 (19)
Cd1-N6	2.390 (2)	Cd1-O4	2.503 (2)
Cd1-N4	2.393 (2)	Cd1-O2	2.5041 (19)
Cd1-N3	2.418 (2)	Cd1-N5	2.510 (2)

V = 1098.27 (8) Å³

Technologies, 2010) $T_{\min} = 0.745, \ T_{\max} = 0.903$

8702 measured reflections 4852 independent reflections

 $R_{\rm int} = 0.032$

4256 reflections with $I > 2\sigma(I)$

Data collection: CrysAlis PRO (Agilent Technologies, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2452).

References

Abedini, J., Morsali, A. & Kempe, R. (2005). J. Coord. Chem. 58, 1161-1167. Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Tadjarodi, A., Taeb, A. & Ng, S. W. (2001). Main Group Met. Chem. 24, 805-806

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2011). E67, m250 [doi:10.1107/S1600536811002431]

[(Nitrato- $\kappa^2 O, O'$)(nitrito- $\kappa^2 O, O'$)(0.25/1.75)]bis(1,10-phenanthroline- $\kappa^2 N, N'$)cadmium(II)

E. Najafi, M. M. Amini and S. W. Ng

Comment

We had previously reported the structure of the 1,10-phenanthroline adduct of cadmium nitrate. In the corresponding structure, the cadmium ion, situated on a twofold rotation axis, shows eightfold coordination, which is somewhat less common (Tadjarodi *et al.*, 2001). The compound is conveniently synthesized by the direct addition of 1,10-phenanthroline to a cadmium nitrate solution. In a similar reaction, but when nitrite ions present, a mixed nitrate/nitrite compound is obtained.

In the title compound, $Cd(NO_2)_{1.75}(NO_3)_{0.25}(C_{12}H_8N_2)_2$ (Scheme I), the metal ion also exists in an eight-coordinate distorted dodecahedral CdN_4O_4 geometry (Fig. 1). The metal ion is bis-chelated by two *N*-heterocycles as well as by the nitrate/nitrite ions. The molecule lies on a general position, and one nitrite group is disordered with respect to a nitrate group (ratio 0.75:0.25).

Experimental

Cadmium nitrate (1 mmol), sodium nitrite (1 mmol) and 1,10-phenanthroline (1 mmol) were loaded into a convection tube. The tube was filled with dry methanol and kept at 333 K. Colorless crystals were collected from the side arm of the tube after several days.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 Å, $U_{iso}(H)$ 1.2 $U_{eq}(C)$] and were included in the refinement in the riding model approximation.

The structure, when refined as a dinitrite, had a high remaining peak approximately 1.2 Å away from one of the two N atoms of the nitrite groups. This site was allow to refine as an O atom of a disordered nitrate group. As the occupancy refined to nearly 1/4, its occupancy was eventually fixed as 0.25.

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of $Cd(NO_2)_{1.75}(NO_3)_{0.25}(C_{12}H_8N_2)_2$ at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

[(Nitrato- $\kappa^2 O, O'$)(nitrito $\kappa^2 O, O'$)(0.25/1.75)]bis(1,10-phenanthroline- $\kappa^2 N, N'$)cadmium(II)

Crystal data

$[Cd(NO_2)_{1.75}(NO_3)_{0.25}(C_{12}H_8N_2)_2]$	Z = 2
$M_r = 568.83$	F(000) = 568
Triclinic, PT	$D_{\rm x} = 1.720 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
a = 9.1470 (4) Å	Cell parameters from 4883 reflections
b = 10.1866 (4) Å	$\theta = 2.4 - 29.3^{\circ}$
c = 13.0057 (6) Å	$\mu = 1.04 \text{ mm}^{-1}$
$\alpha = 76.953 \ (4)^{\circ}$	T = 100 K
$\beta = 77.270 \ (4)^{\circ}$	Irregular, colorless
$\gamma = 70.404 \ (4)^{\circ}$	$0.30 \times 0.20 \times 0.10 \text{ mm}$
$V = 1098.27 (8) \text{ Å}^3$	

Data collection

Agilent Technologies SuperNova Dual diffractometer with an Atlas detector
Radiation source: SuperNova X-ray Source
Mirror
Detector resolution: 10.4041 pixels mm ⁻¹
ω scans
Absorption correction: multi-scan (CrysAlis PRO; Agilent Technologies, 2010)
$T_{\min} = 0.745, T_{\max} = 0.903$
8702 measured reflections

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.033$
$wR(F^2) = 0.073$
<i>S</i> = 1.02
4852 reflections

325 parameters

0 restraints

4852 independent reflections 4256 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 27.5^\circ, \theta_{min} = 2.4^\circ$ $h = -10 \rightarrow 11$ $k = -13 \rightarrow 11$ $l = -16 \rightarrow 12$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0283P)^2 + 0.1342P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.49$ e Å⁻³

 $\Delta \rho_{min} = -0.69 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Cd1	0.55052 (2)	0.243966 (18)	0.241633 (15)	0.01614 (7)	
N1	0.7446 (3)	-0.0427 (2)	0.3117 (2)	0.0230 (5)	
N2	0.8042 (3)	0.3662 (3)	0.1701 (2)	0.0297 (6)	
N3	0.4863 (3)	0.2130 (2)	0.07978 (17)	0.0169 (5)	
N4	0.3528 (3)	0.1267 (2)	0.28117 (17)	0.0154 (5)	
N5	0.3074 (3)	0.4518 (2)	0.22889 (17)	0.0178 (5)	
N6	0.4512 (3)	0.3368 (2)	0.40496 (18)	0.0192 (5)	
01	0.7414 (2)	0.01355 (19)	0.21528 (15)	0.0232 (4)	
02	0.6588 (2)	0.0353 (2)	0.37712 (15)	0.0244 (5)	
O3	0.6973 (3)	0.3783 (2)	0.11795 (17)	0.0324 (5)	
04	0.7905 (3)	0.2957 (2)	0.26214 (17)	0.0311 (5)	
05	0.9091 (12)	0.4103 (10)	0.1371 (8)	0.042 (2)	0.25
C1	0.5549 (4)	0.2514 (3)	-0.0180 (2)	0.0207 (6)	
H1	0.6401	0.2882	-0.0259	0.025*	
C2	0.5079 (4)	0.2403 (3)	-0.1101 (2)	0.0245 (7)	
H2	0.5599	0.2697	-0.1788	0.029*	
C3	0.3864 (4)	0.1866 (3)	-0.1000 (2)	0.0214 (6)	
H3	0.3534	0.1778	-0.1617	0.026*	
C4	0.3102 (3)	0.1446 (3)	0.0025 (2)	0.0172 (6)	
C5	0.3661 (3)	0.1595 (2)	0.0909 (2)	0.0150 (5)	
C6	0.1825 (3)	0.0874 (3)	0.0203 (2)	0.0212 (6)	
H6	0.1455	0.0768	-0.0392	0.025*	
C7	0.1132 (4)	0.0480 (3)	0.1201 (2)	0.0220 (6)	
H7	0.0260	0.0133	0.1297	0.026*	
C8	0.1691 (3)	0.0577 (3)	0.2120 (2)	0.0181 (6)	
С9	0.2942 (3)	0.1139 (2)	0.1978 (2)	0.0151 (6)	
C10	0.1059 (4)	0.0116 (3)	0.3171 (2)	0.0231 (6)	
H10	0.0202	-0.0261	0.3305	0.028*	
C11	0.1695 (3)	0.0216 (3)	0.4007 (2)	0.0224 (6)	
H11	0.1302	-0.0116	0.4722	0.027*	
C12	0.2919 (3)	0.0807 (3)	0.3790 (2)	0.0193 (6)	
H12	0.3337	0.0884	0.4374	0.023*	
C13	0.2348 (4)	0.5050 (3)	0.1442 (2)	0.0208 (6)	
H13	0.2824	0.4683	0.0798	0.025*	
C14	0.0912 (4)	0.6131 (3)	0.1453 (2)	0.0242 (7)	
H14	0.0419	0.6469	0.0833	0.029*	
C15	0.0235 (4)	0.6689 (3)	0.2363 (2)	0.0246 (7)	
H15	-0.0732	0.7429	0.2381	0.029*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C16	0.0972 (3)	0.6166 (3)	0.3281 (2)	0.0195 (6)
C17	0.2391 (3)	0.5055 (3)	0.3202 (2)	0.0171 (6)
C18	0.0342 (4)	0.6698 (3)	0.4263 (2)	0.0240 (7)
H18	-0.0612	0.7451	0.4309	0.029*
C19	0.1074 (4)	0.6156 (3)	0.5130 (2)	0.0240 (7)
H19	0.0644	0.6547	0.5768	0.029*
C20	0.2491 (4)	0.4999 (3)	0.5094 (2)	0.0209 (6)
C21	0.3163 (3)	0.4449 (3)	0.4137 (2)	0.0175 (6)
C22	0.3269 (4)	0.4374 (3)	0.5986 (2)	0.0242 (7)
H22	0.2855	0.4706	0.6648	0.029*
C23	0.4628 (4)	0.3281 (3)	0.5883 (2)	0.0269 (7)
H23	0.5165	0.2837	0.6477	0.032*
C24	0.5216 (4)	0.2824 (3)	0.4898 (2)	0.0233 (6)
H24	0.6177	0.2080	0.4836	0.028*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.01776 (13)	0.01855 (11)	0.01235 (11)	-0.00468 (8)	-0.00285 (8)	-0.00377 (8)
N1	0.0219 (14)	0.0227 (12)	0.0237 (14)	-0.0033 (10)	-0.0042 (11)	-0.0069 (11)
N2	0.0284 (17)	0.0363 (15)	0.0304 (15)	-0.0163 (13)	0.0004 (13)	-0.0124 (12)
N3	0.0190 (13)	0.0177 (11)	0.0145 (12)	-0.0060 (9)	-0.0005 (10)	-0.0050 (9)
N4	0.0149 (13)	0.0173 (11)	0.0116 (11)	-0.0024 (9)	-0.0016 (10)	-0.0021 (9)
N5	0.0247 (14)	0.0156 (11)	0.0137 (12)	-0.0073 (10)	-0.0027 (10)	-0.0021 (9)
N6	0.0219 (14)	0.0186 (11)	0.0189 (12)	-0.0043 (10)	-0.0082 (11)	-0.0043 (10)
01	0.0218 (12)	0.0298 (10)	0.0171 (11)	-0.0051 (9)	-0.0027 (9)	-0.0063 (9)
O2	0.0224 (12)	0.0309 (11)	0.0177 (11)	-0.0022 (9)	-0.0037 (9)	-0.0081 (9)
03	0.0370 (15)	0.0430 (13)	0.0277 (12)	-0.0244 (11)	-0.0071 (11)	-0.0057 (10)
O4	0.0328 (14)	0.0357 (12)	0.0275 (13)	-0.0096 (10)	-0.0054 (11)	-0.0110 (10)
O5	0.031 (6)	0.053 (6)	0.054 (6)	-0.035 (5)	0.001 (5)	-0.009 (5)
C1	0.0216 (17)	0.0242 (14)	0.0180 (15)	-0.0102 (12)	-0.0011 (12)	-0.0035 (12)
C2	0.0307 (19)	0.0293 (15)	0.0130 (14)	-0.0130 (13)	0.0029 (13)	-0.0027 (12)
C3	0.0274 (18)	0.0234 (14)	0.0154 (14)	-0.0083 (12)	-0.0044 (13)	-0.0056 (12)
C4	0.0192 (16)	0.0164 (13)	0.0161 (14)	-0.0030 (11)	-0.0045 (12)	-0.0048 (11)
C5	0.0160 (15)	0.0132 (12)	0.0140 (13)	-0.0003 (10)	-0.0034 (11)	-0.0043 (10)
C6	0.0227 (17)	0.0243 (14)	0.0201 (15)	-0.0068 (12)	-0.0091 (13)	-0.0056 (12)
C7	0.0182 (16)	0.0262 (14)	0.0248 (16)	-0.0086 (12)	-0.0045 (13)	-0.0062 (13)
C8	0.0148 (15)	0.0194 (13)	0.0188 (14)	-0.0032 (11)	-0.0024 (12)	-0.0038 (11)
C9	0.0148 (15)	0.0119 (12)	0.0143 (13)	0.0020 (10)	-0.0024 (11)	-0.0026 (10)
C10	0.0166 (16)	0.0298 (15)	0.0225 (16)	-0.0090 (12)	-0.0013 (13)	-0.0021 (13)
C11	0.0176 (16)	0.0305 (15)	0.0147 (14)	-0.0076 (12)	0.0008 (12)	0.0021 (12)
C12	0.0162 (15)	0.0235 (14)	0.0151 (14)	-0.0032 (11)	-0.0011 (12)	-0.0027 (11)
C13	0.0279 (18)	0.0167 (13)	0.0167 (14)	-0.0053 (12)	-0.0049 (13)	-0.0012 (11)
C14	0.0268 (18)	0.0201 (14)	0.0212 (16)	-0.0029 (12)	-0.0088 (14)	0.0038 (12)
C15	0.0252 (18)	0.0171 (13)	0.0278 (17)	-0.0012 (12)	-0.0071 (14)	-0.0015 (12)
C16	0.0213 (17)	0.0152 (13)	0.0188 (15)	-0.0046 (11)	0.0010 (12)	-0.0020 (11)
C17	0.0195 (16)	0.0157 (13)	0.0165 (14)	-0.0073 (11)	0.0004 (12)	-0.0032 (11)
C18	0.0243 (17)	0.0176 (13)	0.0275 (17)	-0.0053 (12)	0.0013 (14)	-0.0053 (12)

C19	0.0297 (18)	0.0203 (14)	0.0213 (16)	-0.0088(13)	0.0046 (13)	-0.0088 (12)
C20	0.0231 (17)	0.0207 (14)	0.0205 (15)	-0.0101 (12)	-0.0005 (13)	-0.0038 (12)
C21	0.0214 (16)	0.0161 (13)	0.0155 (14)	-0.0086 (11)	-0.0007 (12)	-0.0014 (11)
C22	0.0327 (19)	0.0289 (15)	0.0147 (14)	-0.0134 (14)	0.0005 (13)	-0.0087 (12)
C23	0.035 (2)	0.0279 (15)	0.0201 (16)	-0.0068 (14)	-0.0116 (14)	-0.0051 (13)
C24	0.0240 (17)	0.0238 (14)	0.0226 (16)	-0.0036 (12)	-0.0077 (13)	-0.0064 (12)
Geometric paran	neters (Å, °)					
Cd1—O3		2.355 (2)	C6-	-Н6	0.950	00
Cd1—N6		2.390 (2)	C7–	C8	1.434	(4)
Cd1—N4		2.393 (2)	C7–	-H7	0.950	00
Cd1—N3		2.418 (2)	C8–	C10	1.403	6 (4)
Cd1—O1		2.4547 (19)	C8–	-С9	1.403	5 (4)
Cd1—O4		2.503 (2)	C10	—C11	1.377	' (4)
Cd1—O2		2.5041 (19)	C10	—H10	0.950	00
Cd1—N5		2.510 (2)	C11	—C12	1.391	(4)
N1		1.250 (3)	C11	—H11	0.950	00
N101		1.258 (3)	C12	—H12	0.950	00
N2—O5		1.151 (9)	C13	—C14	1.403	5 (4)
N2		1.254 (3)	C13	—Н13	0.950	00
N2—O3		1.267 (3)	C14	—C15	1.362	2 (4)
N3—C1		1.323 (3)	C14	—H14	0.950	00
N3—C5		1.349 (3)	C15	—C16	1.410	0 (4)
N4—C12		1.320 (3)	C15	—H15	0.950	00
N4—C9		1.359 (3)	C16	—C17	1.409	9 (4)
N5-C13		1.326 (3)	C16	—C18	1.428	8 (4)
N5-C17		1.356 (3)	C17	—C21	1.451	(4)
N6-C24		1.319 (3)	C18	—C19	1.351	(4)
N6-C21		1.353 (4)	C18	—H18	0.950	00
C1—C2		1.398 (4)	C19	—C20	1.430	0 (4)
C1—H1		0.9500	C19	—H19	0.950	00
C2—C3		1.365 (4)	C20	—C22	1.409	9 (4)
C2—H2		0.9500	C20	—C21	1.410	0 (4)
C3—C4		1.406 (4)	C22	—C23	1.367	' (4)
С3—Н3		0.9500	C22	—H22	0.950	00
C4—C5		1.414 (3)	C23	—C24	1.395	5 (4)
C4—C6		1.426 (4)	C23	—H23	0.950	00
С5—С9		1.447 (4)	C24	—H24	0.950	00
C6—C7		1.350 (4)				
O3—Cd1—N6		111.58 (7)	N3-	C5C4	122.6	5 (2)
O3—Cd1—N4		149.81 (7)	N3-	-С5-С9	118.3	(2)
N6—Cd1—N4		90.18 (8)	C4-	-С5-С9	119.1	(2)
O3—Cd1—N3		81.88 (7)	С7—	C6C4	121.2	2 (2)
N6—Cd1—N3		145.83 (8)	С7—	-С6—Н6	119.4	Ļ
N4—Cd1—N3		68.85 (7)	C4-	-С6—Н6	119.4	Ļ
O3—Cd1—O1		95.42 (7)	C6-	C7C8	121.0	0(3)
N6-Cd1-O1		127.58 (7)	C6-	—С7—Н7	119.5	
N4—Cd1—O1		86.59 (7)	C8–	—С7—Н7	119.5	

N3-Cd1-01	79 44 (7)	C10_C8_C9	117.5(2)
O_3 —Cd1—O4	51 44 (7)	C10 - C8 - C7	117.3(2) 1231(3)
N6-Cd1-04	81 44 (8)	C9 - C8 - C7	1194(3)
N4-Cd1-O4	157 42 (7)	N4-C9-C8	119.1(3) 122.6(2)
N_3 —Cd1—O4	127 41 (8)	N4-C9-C5	117.8(2)
$\Omega_1 - Cd_1 - \Omega_4$	82 14 (7)	C_{8} C_{9} C_{5}	117.0(2) 119.6(2)
03 - Cd1 - 02	125 56 (7)	$C_{11} - C_{10} - C_{8}$	119.0(2) 119.2(3)
N6-Cd1-O2	77 83 (7)	C11-C10-H10	120.4
N4—Cd1—O2	78 09 (7)	C8 - C10 - H10	120.1
N_3 —Cd1—O2	120.90 (6)	C10-C11-C12	1193(3)
01-Cd1-02	50 33 (6)	C10-C11-H11	120.4
04 - Cd1 - 02	79 66 (7)	C12—C11—H11	120.1
O_{3} Cd1 O_{2}	89.71 (8)	N4_C12_C11	120.4 123.0(3)
N6-Cd1-N5	67 54 (7)	N4_C12_H12	123.0 (3)
N_{4} Cd1 N_{5}	79.26 (7)	$C_{11} = C_{12} = H_{12}$	118.5
N_{2} Cd1 N_{5}	81 80 (7)	N5-C13-C14	123 1 (3)
$\Omega_1 Cd1 N5$	150 63 (7)	N5 C13 H13	123.1 (3)
O4 Cd1 N5	139.03(7)	N_{3} C_{13} H_{13} H_{13}	110.4
$O_2 = Cd1 = N5$	113.94(7) 138.17(7)	$C_{14} = C_{13} = 1113$	110.4
02 - Cd1 - N3	130.17(7)	$C_{15} = C_{14} = C_{15}$	119.1 (5)
02 - N1 - 01	114.4(2) 121.2(5)	$C_{13} = C_{14} = H_{14}$	120.5
05 - N2 - 04	121.3(3)	$C_{13} - C_{14} - M_{14}$	120.3
03 - N2 - 03	124.7(0)	C14 - C15 - C10	119.8 (5)
04 - N2 - 03	113.9 (2)	C14—C15—H15	120.1
C1 = N3 = C3	110.4(2) 124.62(18)	C10-C15-H15	120.1
$C_1 = N_3 = C_{d1}$	124.02(18) 116.00(17)	C17 - C16 - C13	117.0(5) 110.7(2)
$C_3 = N_3 = C_0 $	110.90 (17)	C1/-C10-C18	119.7 (5)
C12 N4 $C41$	118.3(2)	C15-C16-C18	123.2(3)
C12—N4—Cd1	123.8/(1/)	N5-C17-C16	122.9 (2)
C9 - N4 - Cd1	11/.69(1/)	$N_{3} = C_{1} = C_{2}$	118.1 (2)
C13—N5—C17	118.0 (2)	C16 - C17 - C21	119.0 (3)
CI3—N5—Cdl	125.85 (19)	C19 - C18 - C16	121.5 (3)
CI/—NS—Cdl	115.91 (17)	C19C18H18	119.3
C24—N6—C21	118.0 (3)	C16C18H18	119.3
C24—N6—Cd1	121.76 (19)	C18—C19—C20	120.5 (3)
C2I—N6—CdI	120.25 (17)	C18—C19—H19	119.7
NI—OI—Cdl	98.71 (15)	C20—C19—H19	119.7
NI-O2-Cdl	96.51 (15)	$C_{22} = C_{20} = C_{21}$	117.6 (3)
N2-O3-Cd1	100.74 (17)	C22—C20—C19	122.5 (3)
N2—O4—Cd1	93.91 (16)	C21—C20—C19	119.9 (3)
N3—C1—C2	123.1 (3)	N6-C21-C20	122.6 (2)
N3—C1—H1	118.5	N6—C21—C17	118.0 (2)
C2—C1—H1	118.5	C20—C21—C17	119.3 (3)
C3—C2—C1	119.1 (3)	C23—C22—C20	119.0 (3)
C3—C2—H2	120.4	C23—C22—H22	120.5
C1—C2—H2	120.4	C20—C22—H22	120.5
C2—C3—C4	119.6 (2)	C22—C23—C24	119.3 (3)
С2—С3—Н3	120.2	C22—C23—H23	120.4
C4—C3—H3	120.2	C24—C23—H23	120.4
C3—C4—C5	117.2 (2)	N6—C24—C23	123.5 (3)

C3—C4—C6	123.3 (2)	N6—C24—H24	118.2
C5—C4—C6	119.5 (3)	C23—C24—H24	118.2
O3—Cd1—N3—C1	9.7 (2)	O3—N2—O4—Cd1	1.6 (2)
N6—Cd1—N3—C1	126.5 (2)	O3—Cd1—O4—N2	-0.98 (16)
N4—Cd1—N3—C1	-177.9 (2)	N6-Cd1-O4-N2	-127.53 (17)
O1—Cd1—N3—C1	-87.4 (2)	N4—Cd1—O4—N2	163.19 (18)
O4—Cd1—N3—C1	-16.0 (2)	N3—Cd1—O4—N2	32.21 (19)
O2—Cd1—N3—C1	-117.2 (2)	O1—Cd1—O4—N2	102.42 (17)
N5—Cd1—N3—C1	100.5 (2)	O2—Cd1—O4—N2	153.38 (17)
O3—Cd1—N3—C5	-166.68 (19)	N5—Cd1—O4—N2	-67.72 (18)
N6—Cd1—N3—C5	-49.9 (2)	C5—N3—C1—C2	0.6 (4)
N4—Cd1—N3—C5	5.81 (17)	Cd1—N3—C1—C2	-175.7 (2)
O1-Cd1-N3-C5	96.22 (18)	N3—C1—C2—C3	-0.4 (4)
O4—Cd1—N3—C5	167.70 (16)	C1—C2—C3—C4	0.4 (4)
O2—Cd1—N3—C5	66.5 (2)	C2—C3—C4—C5	-0.5 (4)
N5—Cd1—N3—C5	-75.80 (18)	C2—C3—C4—C6	-179.9 (3)
O3—Cd1—N4—C12	-167.40 (19)	C1—N3—C5—C4	-0.7 (4)
N6—Cd1—N4—C12	-30.0 (2)	Cd1—N3—C5—C4	175.90 (19)
N3—Cd1—N4—C12	177.7 (2)	C1—N3—C5—C9	178.3 (2)
O1—Cd1—N4—C12	97.7 (2)	Cd1—N3—C5—C9	-5.2 (3)
O4—Cd1—N4—C12	37.7 (3)	C3—C4—C5—N3	0.7 (4)
O2—Cd1—N4—C12	47.6 (2)	C6—C4—C5—N3	-179.9 (2)
N5-Cd1-N4-C12	-97.0 (2)	C3—C4—C5—C9	-178.3 (2)
O3—Cd1—N4—C9	8.8 (3)	C6—C4—C5—C9	1.2 (4)
N6—Cd1—N4—C9	146.27 (18)	C3—C4—C6—C7	179.8 (3)
N3—Cd1—N4—C9	-6.09 (17)	C5—C4—C6—C7	0.4 (4)
O1—Cd1—N4—C9	-86.08 (18)	C4—C6—C7—C8	-2.2 (4)
O4—Cd1—N4—C9	-146.08 (19)	C6—C7—C8—C10	-176.7 (3)
O2—Cd1—N4—C9	-136.21 (19)	C6—C7—C8—C9	2.3 (4)
N5—Cd1—N4—C9	79.19 (18)	C12—N4—C9—C8	1.8 (4)
O3—Cd1—N5—C13	68.5 (2)	Cd1—N4—C9—C8	-174.59 (18)
N6—Cd1—N5—C13	-177.9 (2)	C12—N4—C9—C5	-177.6 (2)
N4—Cd1—N5—C13	-83.2 (2)	Cd1—N4—C9—C5	6.0 (3)
N3—Cd1—N5—C13	-13.3 (2)	C10—C8—C9—N4	-1.0 (4)
O1—Cd1—N5—C13	-36.4 (3)	C7—C8—C9—N4	179.8 (2)
O4—Cd1—N5—C13	114.5 (2)	C10—C8—C9—C5	178.4 (2)
O2-Cd1-N5-C13	-141.39 (19)	C7—C8—C9—C5	-0.7 (4)
O3—Cd1—N5—C17	-117.09 (18)	N3—C5—C9—N4	-0.5 (3)
N6—Cd1—N5—C17	-3.51 (17)	C4—C5—C9—N4	178.5 (2)
N4—Cd1—N5—C17	91.18 (19)	N3—C5—C9—C8	-179.9 (2)
N3—Cd1—N5—C17	161.08 (19)	C4—C5—C9—C8	-1.0 (4)
O1—Cd1—N5—C17	138.0 (2)	C9—C8—C10—C11	-0.8 (4)
O4—Cd1—N5—C17	-71.16 (19)	C7—C8—C10—C11	178.3 (3)
O2—Cd1—N5—C17	33.0 (2)	C8—C10—C11—C12	1.8 (4)
O3—Cd1—N6—C24	-99.0 (2)	C9—N4—C12—C11	-0.8 (4)
N4—Cd1—N6—C24	102.5 (2)	Cd1—N4—C12—C11	175.4 (2)
N3—Cd1—N6—C24	152.85 (19)	C10-C11-C12-N4	-1.0 (4)
O1-Cd1-N6-C24	16.6 (2)	C17—N5—C13—C14	-0.4 (4)
O4Cd1N6C24	-56.5 (2)	Cd1—N5—C13—C14	173.9 (2)

O2-Cd1-N6-C24	24.7 (2)	N5-C13-C14-C15	1.4 (4)
N5-Cd1-N6-C24	-179.2 (2)	C13—C14—C15—C16	-0.7 (4)
O3-Cd1-N6-C21	83.4 (2)	C14—C15—C16—C17	-0.9 (4)
N4—Cd1—N6—C21	-75.1 (2)	C14—C15—C16—C18	179.7 (3)
N3—Cd1—N6—C21	-24.8 (3)	C13—N5—C17—C16	-1.4 (4)
O1-Cd1-N6-C21	-160.97 (17)	Cd1—N5—C17—C16	-176.21 (19)
O4-Cd1-N6-C21	125.9 (2)	C13—N5—C17—C21	178.5 (2)
O2-Cd1-N6-C21	-152.9 (2)	Cd1—N5—C17—C21	3.7 (3)
N5-Cd1-N6-C21	3.16 (18)	C15-C16-C17-N5	2.0 (4)
O2—N1—O1—Cd1	-1.1 (2)	C18—C16—C17—N5	-178.5 (2)
O3—Cd1—O1—N1	133.52 (16)	C15-C16-C17-C21	-177.9 (2)
N6-Cd1-O1-N1	10.90 (19)	C18—C16—C17—C21	1.6 (4)
N4—Cd1—O1—N1	-76.70 (16)	C17—C16—C18—C19	-0.3 (4)
N3—Cd1—O1—N1	-145.80 (16)	C15-C16-C18-C19	179.2 (3)
O4—Cd1—O1—N1	83.69 (16)	C16—C18—C19—C20	-1.6 (4)
O2-Cd1-O1-N1	0.64 (14)	C18—C19—C20—C22	-178.1 (3)
N5-Cd1-O1-N1	-122.5 (2)	C18—C19—C20—C21	2.2 (4)
O1—N1—O2—Cd1	1.1 (2)	C24—N6—C21—C20	-0.4 (4)
O3—Cd1—O2—N1	-64.39 (17)	Cd1—N6—C21—C20	177.34 (19)
N6-Cd1-O2-N1	-172.34 (17)	C24—N6—C21—C17	179.7 (2)
N4—Cd1—O2—N1	94.86 (16)	Cd1—N6—C21—C17	-2.6 (3)
N3—Cd1—O2—N1	38.65 (18)	C22-C20-C21-N6	-0.5 (4)
O1-Cd1-O2-N1	-0.64 (14)	C19—C20—C21—N6	179.1 (2)
O4—Cd1—O2—N1	-88.97 (16)	C22—C20—C21—C17	179.4 (2)
N5-Cd1-O2-N1	153.45 (15)	C19—C20—C21—C17	-0.9 (4)
O5—N2—O3—Cd1	175.7 (6)	N5-C17-C21-N6	-0.9 (4)
O4—N2—O3—Cd1	-1.7 (3)	C16—C17—C21—N6	179.0 (2)
N6-Cd1-O3-N2	59.66 (19)	N5-C17-C21-C20	179.1 (2)
N4—Cd1—O3—N2	-167.00 (16)	C16-C17-C21-C20	-1.0 (4)
N3—Cd1—O3—N2	-152.96 (18)	C21—C20—C22—C23	0.4 (4)
O1—Cd1—O3—N2	-74.47 (18)	C19—C20—C22—C23	-179.3 (3)
O4—Cd1—O3—N2	0.99 (16)	C20—C22—C23—C24	0.6 (4)
O2—Cd1—O3—N2	-30.6 (2)	C21—N6—C24—C23	1.5 (4)
N5-Cd1-O3-N2	125.28 (18)	Cd1—N6—C24—C23	-176.2 (2)
O5—N2—O4—Cd1	-175.9 (6)	C22-C23-C24-N6	-1.6 (5)

Fig. 1